## 第6章 定时器/计数器

(课时: 4学时)

### 教学目的

- 了解定时器/计数器的结构与工作原理。
- 掌握定时器/计数器的四种工作方式的特点及应用。
- 用定时器/计数器设计一个可产生一定频率方波的信号源。
- 用定时器/计数器设计一个脉冲宽度调制(PWM)信号以控制直流电动机转速。
- 用定时器/计数器设计一个用于流水生产线上的产品自动计数器。
- 用定时器/计数器设计一个测量电平脉冲宽度的程序。
- 用定时器/计数器设计一个电子音乐程序。
- 用定时器/计数器设计一个电子音乐程序。

## 学习重点和难点

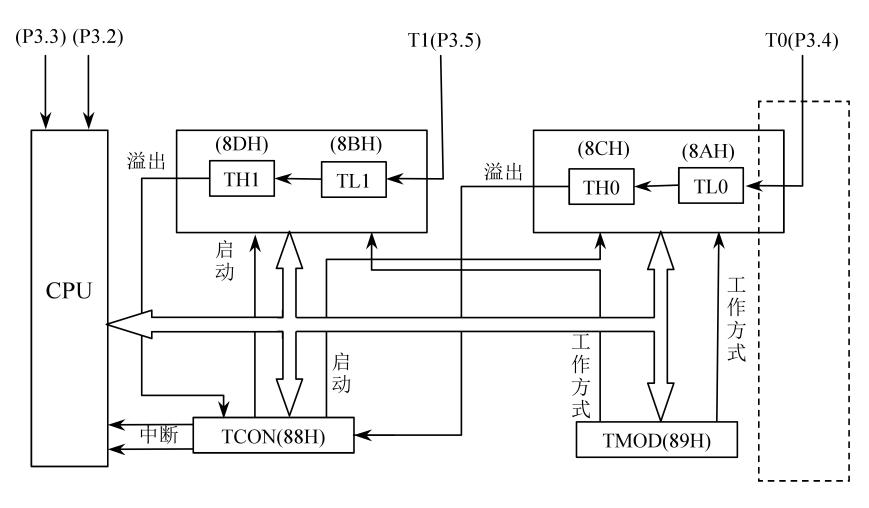
- 定时器/计数器的初始化。
- 定时器/计数器与中断的综合应用。

## 第6章 定时器/计数器

- 6.1 定时器/计数器的结构与原理
- 6.2 定时器/计数器的控制
- 6.3 定时器/计数器的四种工作方式及应用
- 本章小结
- 习题

# 6.1 定时器/计数器的 结构与原理

- 6.1.1 定时器/计数器的结构
- 6.1.2 定时器/计数器的原理
- 6.1.3 定时器/计数器的功能




### 6.1.1 定时器/计数器的结构

- 8051单片机内部设有两个16位可编程定时器/计数器,简称 为定时器0(T0)和定时器1(T1)。
- 16位的定时器/计数器分别由两个8位寄存器组成,即:T0 由TH0和TL0构成,T1由TH1和TL1构成。每个寄存器均可 单独访问,这些寄存器是用于存放定时初值或计数初值的。
- 有一个8位的定时器方式寄存器TMOD和一个8位的定时器控制寄存器TCON。这些寄存器之间是通过内部总线和控制逻辑电路连接起来的,定时器/计数器的工作方式、定时时间和启停控制通过由指令来确定这些寄存器的状态来实现。TMOD主要用于设定定时器的工作方式,TCON主要用于控制定时器的启动与停止,并保存T0、T1的溢出和中断标志。

### 6.1.1 定时器/计数器的结构

#### 定时器/计数器结构框图



## 6.1.2 定时器/计数器的原理

- 16位的定时器/计数器实质上是一个加l计数器,可实现定时和计数两种功能,其功能由软件控制和切换。定时器属硬件定时和计数,是单片机中效率高而且工作灵活的部件。
- 在定时器/计数器开始工作之前, CPU必须将一些命令(称为控制字)写入定时器/计数器。将控制字写入定时器/计数器的过程叫定时器/计数器的初始化。
- 在初始化程序中,要将工作方式控制字写入定时器方式寄存器(TMOD),工作状态控制字(或相关位)写入定时器控制寄存器(TCON),赋定时/计数初值给TH0(TH1)和TL0(TL1)。

### 6.1.2 定时器/计数器的原理

- 定时器/计数器的定时功能。
- 计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出。
- 定时器的定时时间与系统的时钟频率有关。因一个机器周期等于12个时钟周期,所以计数频率应为系统时钟频率的十二分之一。如果晶振频率为12MHz,则机器周期为1μs。通过改变定时器的定时初值,并适当选择定时器的长度(8位、13位或16位),可以调整定时时间。

### 6.1.2 定时器/计数器的原理

- 定时器/计数器的计数功能。
- 通过外部计数输入引脚T0(P3.4)和T1(P3.5)对外部信号计数,外部脉冲的下降沿将触发计数。计数器在每个机器周期的S5P2期间采样引脚输入电平,若一个机器周期S5P2期间采样值为0,期间采样值为1,下一个机器周期S3P1期间,新的计数值装入计数器。
- 因检测一个由1至0的跳变需要两个机器周期,故外部信号的最高计数频率为时钟频率的二十四分之一。如果晶振频率为12MHz,则最高计数频率为0.5MHz。虽然对外部输入信号的占空比无特殊要求,但为了确保给定电平在变化前至少被采样一次,外部计数脉冲的高电平与低电平保持时间均需在一个机器周期以上。

### 6.1.3 定时器/计数器的功能

定时器/计数器具有定时和计数两种功能,应用范围如下。

#### 1. 定时与延时控制方面

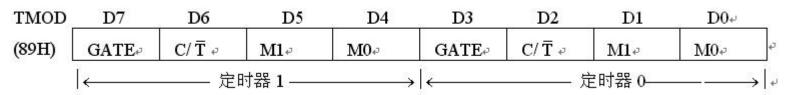
可产生定时中断信号,以设计出各种不同频率的信号源; 产生定时扫描信号,对键盘进行扫描以获得控制信号,对 显示器进行扫描以不间断地显示数据。

#### 2. 测量外部脉冲方面

对外部脉冲信号进行计数可测量脉冲信号的宽度、周期,也可实现自动计数。

#### 3. 监控系统工作方面

对系统进行定时扫描,当系统工作异常时,使系统自动复位,重新启动以恢复正常工作。


## 6.2 定时器/计数器的控制

- 6.2.1 定时器方式寄存器TMOD
- 6.2.2 定时器控制寄存器TCON



### 6.2.1 定时器方式寄存器TMOD

定时器方式寄存器TMOD的作用是设置T0、T1的工作方式。TMOD的格式:



#### 各位的功能说明:

- (1) GATE: 门控位。
- GATE=0:软件启动定时器,即用指令使TCON中的TR1(TR0)置1即可启动定时器1(定时器0)。
- GATE=1:软件和硬件共同启动定时器,即用指令使TCON中的TR1(TR0)置1时,只有外部中断INT0(INT1)引脚输入高电平时才能启动定时器1(定时器0)。

### 6.2.1 定时器方式寄存器TMOD

- (2) C/T: 功能选择位。
- C/T=0时,以定时器方式工作。
- ▶ C/T=1时,以计数器方式工作。
- (3) M1、M0: 方式选择位。

#### 定时器工作方式选择位定义

| M1 M0 | 工作方式 | 功能描述                              |  |  |  |  |  |
|-------|------|-----------------------------------|--|--|--|--|--|
| 0 0   | 方式0  | 13位计数器                            |  |  |  |  |  |
| 0 1   | 方式1  | 16位计数器                            |  |  |  |  |  |
| 1 0   | 方式2  | 自动重装初值8位计数器                       |  |  |  |  |  |
| 1 1   | 方式3  | 定时器0:分为两个独立的8位计数器<br>定时器1:无中断的计数器 |  |  |  |  |  |

### 6.2.2 定时器控制寄存器TCON

定时器控制寄存器TCON的作用是控制定时器的启动与停止,并保存T0、T1的溢出和中断标志。

#### TCON的格式:

| TCON   | 8FH  | 8EH  | 8DH  | 8CH  | 8BH | 8AH  | 89H | 88H₽ | -  |
|--------|------|------|------|------|-----|------|-----|------|----|
| (88H)√ | TF1₽ | TR1₽ | TF0₽ | TR0₽ | Œ1₽ | IT1₽ | Œ0₽ | IT0₽ | ą3 |

#### 各位的功能说明:

(1) TF1(TCON.7):定时器1溢出标志位。当定时器1计满溢出时,由硬件自动使TF1置1,并申请中断。对该标志位有两种处理方法,一种是以中断方式工作,即TF1置1并申请中断,响应中断后,执行中断服务程序,并由硬件自动使TF1清0;另一种以查询方式工作,即通过查询该位是否为1来判断是否溢出,TF1置1后必须用软件使TF1清0。

### 6.2.2 定时器控制寄存器TCON

#### 各位的功能说明:

- (2) TR1(TCON.6): 定时器1启停控制位。
- GATE=0时,用软件使TR1置1即启动定时器1,若用软件使TR1清0则停止定时器1。
- GATE=1时,用软件使TR1置1的同时外部中断INT1的引脚输入高电平才能启动定时器1。
- (3) TF0(TCON.5): 定时器0溢出标志位。其功能同TF1。
- (4) TR0(TCON.4): 定时器0启停控制位。其功能同TR1。
- (5) IE1(TCON.3):外部中断1请求标志位。
- (6) IT1(TCON.2): 外部中断1触发方式选择位。
- (7) IE0(TCON.1): 外部中断0请求标志位。
- (8) IT0(TCON.0):外部中断0触发方式选择位。

# 6.3 定时器/计数器的四种 工作方式及应用

- 6.3.1 定时器/计数器的初始化
- 6.3.2 方式0及应用实例
- 6.3.3 方式1及应用实例
- 6.3.4 方式2及应用实例
- 6.3.5 方式3



#### 1. 定时器/计数器的初始化步骤

定时器/计数器是一种可编程部件,在使用定时器/计数器前,一般都要对其进行初始化,以确定其以特定的功能工作。 初始化的步骤如下。

- (1) 确定定时器/计数器的工作方式,确定方式控制字,并写入 TMOD。
- (2) 预置定时初值或计数初值,根据定时时间或计数次数,计 算定时初值或计数初值,并写入TH0、TL0或TH1、TL1。
- (3) 根据需要开放定时器/计数器的中断,给IE中的相关位赋值。
- (4) 启动定时器/计数器,给TCON中的TR1或TR0置1。

#### 2. 定时初值或计数初值的计算方法

不同工作方式的定时初值或计数初值的计算方法如下表所示。

| 工作方式 | 计数位数 | 最大计数值     | 最大定时时<br>间                      | 定时初值计算公<br>式          | 计数初值计算公式  |
|------|------|-----------|---------------------------------|-----------------------|-----------|
| 方式0  | 13   | 213=8192  | 2 <sup>13</sup> ×T <sub>机</sub> | $X=2^{13}-T/T_{ eta}$ | X=213-计数值 |
| 方式1  | 16   | 216=65536 | 2 <sup>16</sup> ×T <sub>机</sub> | $X=2^{16}-T/T$ 机      | X=216-计数值 |
| 方式2  | 8    | 28=256    | 2 <sup>8</sup> ×T <sub>机</sub>  | $X=2^{8}-T/T$ 机       | X=28-计数值  |

表中T表示定时时间, $T_{\text{ML}}$ 表示机器周期。

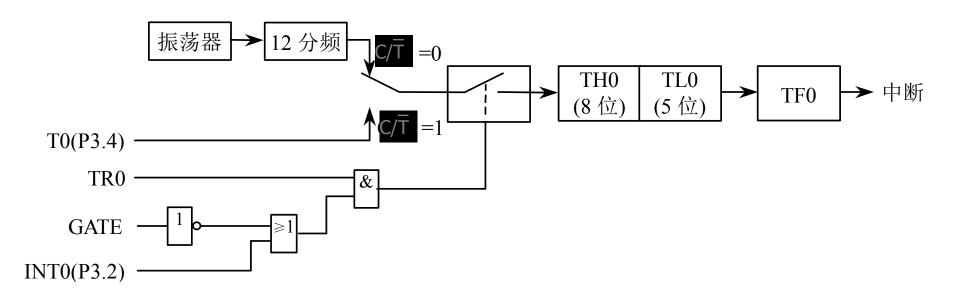
【例1】用定时器0方式0,定时5ms,以中断方式工作,进行程序初始化设计,晶振频率为6MHz。

解:用定时器0方式0时,定时器/计数器方式寄存器TMOD低4位中的M1M0应取00;可设定为软件启动定时器,故GATE取0;因用定时功能,C/T取0;定时器方式寄存器TMOD高4位为无关位,一般都取0,所以TMOD应为00H。

晶振频率为6MHz, $T_{\text{fl}}$ =12/ $f_{\text{osc}}$ =12/(6×10<sup>6</sup>)=2 $\mu$ s 定时初值X=2<sup>13</sup>- $T/T_{\text{fl}}$ =2<sup>13</sup>-5×10<sup>3</sup>/2=8192-2500=5692 =163CH=1011000111100B

因TL0的高3位未用,对计算出的定时初值X要进行修正,即在低5位前插入3个0,修正后的定时初值

X=1011000100011100B=B11CH


定时器以中断方式工作,故将中断总允许位EA和定时器0的中断允许位ET0置1。

#### 参考程序:

```
:置定时器0为工作方式0
75
   89
       00
            MOV
                TMOD, #00H
                             ;定时初值的高8位
75
                THO, #0B1H
   8C
       B1
            MOV
                             ;定时初值的低8位
       1C
                TL0,#1CH
75
   8A
            MOV
                             ;开放中断总允许位
D2
   AF
            SETB
                 EA
                             ;开放定时器0的中断允许位
D2
   A9
            SETB
                 ET0
                             ;启动定时器0
D2
   8C
            SETB
                  TR0
```

- 在方式0下,以定时器0为例,定时器/计数器是一个由TH0中的8位和TL0中的低5位组成的13位加1计数器(TL0中的高3位不用);若TL0中的第5位有进位,直接进到TH0中的最低位。定时器/计数器0方式0逻辑结构如下图所示。
- 当门控位GATE=0时,或门输出始终为1,与门被打开,与门的输出电平始终与TR0的电平一致,实现由TR0控制定时器/计数器的启动和停止。若软件使TR0置1,接通控制开关,启动定时器0,13位加1计数器在定时初值或计数初值的基础上进行加1计数;溢出时,13位加1计数器为0,TF0由硬件自动置1,并申请中断,同时13位加1计数器继续从0开始计数。若软件使TR0清0,关断控制开关,停止定时器0,加1计数器停止计数。

#### 定时器/计数器0方式0逻辑结构



【例2】 在P1.0输出周期为1 ms(频率1kHz)的方波,采用定时器1方式0设计程序,晶振频率为12MHz。

解:根据题意,只要使P1.0每隔500μs取反一次即可得到周期1 ms的方波,因而T1的定时时间为500μs。

用定时器1方式0时,定时器/计数器方式寄存器TMOD高4位中的M1M0应取00;可设定为软件启动定时器,故GATE取0;因为用定时功能,C/T取0;定时器方式寄存器TMOD低4位为无关位,一般都取0,所以TMOD应为00H。

晶振频率为12MHz, $T_{\text{fl}}$ =12/ $f_{\text{osc}}$ =12/(12×106)=1 $\mu$ s 定时初值 X=213- $T/T_{\text{fl}}$ =213-500/1=8192-500=7692 =1E0CH=1111000001100B

因TL1的高3位未用,对计算出的定时初值X要进行修正,即在低5位前插入3个0,修正后的定时初值

X=1111000000001100B=F00CH

#### 参考程序:

## 6.3.2 方式0及应用实例

| 地址    |    | 机器 | <b>译码</b> |       | 利    | 呈序        | 注释            |
|-------|----|----|-----------|-------|------|-----------|---------------|
|       |    |    |           |       | ORG  | 0000н     |               |
| 0000н | 02 | 00 | 50        |       | LJMP | MAIN      |               |
|       |    |    |           |       | ORG  | 0050Н     |               |
| 0050н | D2 | 90 |           | MAIN: | SETB | P1.0      | ;置P1.0初始状态    |
| 0052Н | 75 | 89 | 00        |       | VOM  | TMOD,#00H | ;置定时器1为工作方式0  |
| 0055Н | 75 | 8D | F1        |       | MOV  | TH1,#0F0H | ;置500μs定时初值   |
| 0058Н | 75 | 8B | 0C        |       | VOM  | TL1,#0CH  |               |
| 005ВН | D2 | 8E |           |       | SETB | TR1       | ;启动定时器1       |
| 005DH | 10 | 8F | 02        | LP1:  | JBC  | TF1,LP2   | ;查询计数溢出       |
| 0060н | 80 | FB |           |       | SJMP | LP1       | ;未到500μs继续计数  |
| 0062Н | 75 | 8D | F1        | LP2:  | MOV  | TH1,#0F0H | ;重新置500μs定时初值 |
| 0065Н | 75 | 8B | 0C        |       | MOV  | TL1,#0CH  |               |
| 0068Н | В2 | 90 |           |       | CPL  | P1.0      | ;输出取反         |
| 006AH | 80 | E4 |           |       | SJMP | LP1       | ;重复循环         |
|       |    |    |           |       | END  |           |               |

【例3】P1口做输出口,控制八只灯(P1口输出低电平时灯被点亮),同一时间只有两盏灯点亮,按一定的规律每隔1秒循环点亮下一盏灯;采用定时器0方式0设计延时子程序,定时时间为5ms,晶振频率为6MHz。

解:延时子程序要求延时1s,又规定定时时间5ms,可在硬件定时的基础上再加软件计数来实现1s的延时;5ms定时初值的计算参见例1,软件计数值为200。

用定时器0方式0时,定时器/计数器方式寄存器TMOD低4位中的M1M0应取00;可设定为软件启动定时器,故GATE取0;因用定时功能,C/T取0;定时器方式寄存器TMOD高4位为无关位,一般都取0;所以TMOD应为00H。

设定时器0的溢出标志位以查询方式工作。

#### 主程序:

|       |            |            |        | ORG 0000H      |           |
|-------|------------|------------|--------|----------------|-----------|
| 0000Н | 21         | 50         |        | AJMP MAIN      |           |
|       |            |            |        | ORG 0150H      |           |
| 0150Н | 7 <b>A</b> | 06         | MAIN:  | MOV R2,#06H    |           |
| 0152Н | 74         | FC         |        | MOV A,#0FCH    | ;灯点亮的初始状态 |
| 0154H | F5         | 90         | NEXT:  | MOV P1,A       |           |
| 0156н | 51         | 00         |        | ACALL DELAY    |           |
| 0158н | 23         |            |        | RL A           | ;点亮左边一盏灯  |
| 0159н | DA         | F9         |        | DJNZ R2, NEXT  |           |
| 015ВН | 7 <b>A</b> | 06         |        | MOV R2,#06H    |           |
| 015DH | F5         | 90         | NEXT1: | MOV P1,A       |           |
| 015FH | 03         |            |        | RR A           | ;点亮右边一盏灯  |
| 0160н | 51         | 00         |        | ACALL DELAY    |           |
| 0162н | DA         | <b>F</b> 9 |        | DJNZ R2, NEXT1 |           |
| 0164н | 80         | EA         |        | SJMP MAIN      |           |
|       |            |            |        |                |           |

|       |    |            |    |        | ORG  | 0200Н             |              |
|-------|----|------------|----|--------|------|-------------------|--------------|
| 0200Н | 79 | C8         |    | DELAY: | MOV  | R1,#200           | ;置5ms计数循环初值  |
| 0202Н | 75 | 89         | 00 |        | MOV  | <b>TMOD</b> ,#00H | ;置定时器0为工作方式0 |
| 0205Н | 75 | 8C         | в1 |        | MOV  | TH0,#0B1H         | ;置5ms定时初值    |
| 0208Н | 75 | 8 <b>A</b> | 1C |        | MOV  | TL0,#1CH          |              |
| 020BH | D2 | 8C         |    |        | SETB | TRO               | ;启动定时器1      |
| 020DH | 10 | 8D         | 02 | LP1:   | JBC  | TF0,LP2           | ;查询计数溢出      |
| 0210Н | 80 | FB         |    |        | SJMP | LP1               | ;未到5ms继续计数   |
| 0212Н | 75 | 8C         | в1 | LP2:   | MOV  | THO,#0B1H         | ;重新置5ms定时初值  |
| 0215Н | 75 | 8 <b>A</b> | 1C |        | MOV  | TL0,#1CH          |              |
| 0218Н | D9 | F3         |    |        | DJNZ | R1,LP1            | ;未到1s继续循环    |
| 021AH | 22 |            |    |        | RET  |                   | ;返回主程序       |
|       |    |            |    |        | END  |                   |              |

【例4】每隔1秒使P1.1输出取反一次同时使片内RAM区20H单元中的内容加1,采用定时器0方式0设计程序,晶振频率6MHz。

解:根据题意,定时时间为1s,因方式0最大计数值为8192,机器周期为2µs,则方式0的最大定时时间为16.384ms;显然不能满足本题的定时时间要求,因而需另设软件计数器,即在硬件定时的基础上再加软件计数。

设硬件定时时间10 ms,软件计数的次数则为100次。

定时初值  $X=2^{13}-T/T_{\text{机}}=2^{13}-10\times10^{3}/2=8192-5000$  =3192=0C78H=0110001111000B

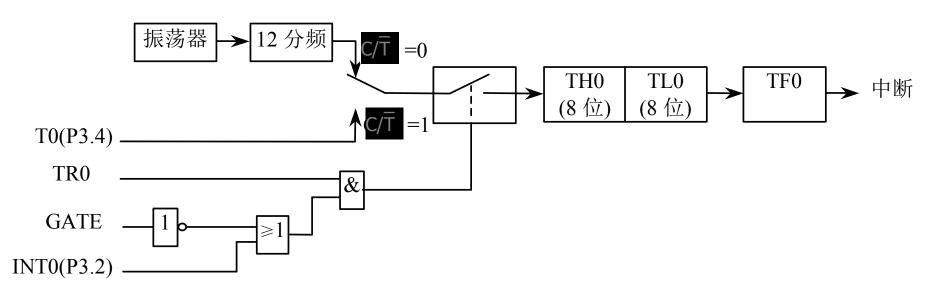
因TL0的高3位未用,对计算出的定时初值X要进行修正,即 在低5位前插入3个0,修正后的定时初值

X=0110001100011000B=6318H

定时器以中断方式工作。

#### 主程序:

|       |    |            |    |       | ORG  | 0000н     |              |
|-------|----|------------|----|-------|------|-----------|--------------|
| 0000н | 02 | 00         | 50 |       | LJMP | MAIN      |              |
|       |    |            |    |       | ORG  | 000BH     | ;定时器0的中断入口地址 |
| 000ВН | 02 | 02         | 00 |       | LJMP | SER0      | ;指向中断服务程序    |
|       |    |            |    |       | ORG  | 0030н     |              |
| 0030н | D2 | 90         |    | MAIN: | SETB | P1.1      | ;置P1.1初始状态   |
| 0032Н | 75 | 20         | 00 |       | MOV  | 20н,#00н  | ;20H单元清0     |
| 0035н | 78 | 64         |    |       | MOV  | R0,#64H   | ;软件计数100次    |
| 0037н | 75 | 89         | 00 |       | MOV  | TMOD,#00H | ;置定时器0为工作方式0 |
| 003AH | 75 | 8C         | 63 |       | MOV  | тн0,#63н  | ;置10ms定时初值   |
| 003DH | 75 | 8 <b>A</b> | 18 |       | MOV  | TL0,#18H  |              |
| 0040H | D2 | AF         |    |       | SETB | EA        |              |
| 0042H | D2 | <b>A</b> 9 |    |       | SETB | ETO       |              |
| 0044H | D2 | 8C         |    |       | SETB | TRO       |              |
| 0046н | 80 | FE         |    |       | SJMP | \$        |              |
|       |    |            |    |       |      |           |              |


#### 中断服务程序:

| 0100н | 75 | 8C | 63 | SER0  | : MOV | тно,#63н | ;重新置10ms定时初值 |
|-------|----|----|----|-------|-------|----------|--------------|
| 0103н | 75 | 8A | 18 |       | MOV   | TL0,#18H |              |
| 0106н | D8 | 04 |    |       | DJNZ  | R0,EXIT  | ;未到1s继续计数    |
| 0108н | в2 | 91 |    |       | CPL   | P1.1     |              |
| 010AH | 05 | 20 |    |       | INC   | R0       |              |
| 010CH | 32 |    |    | EXIT: | RETI  |          |              |
|       |    |    |    |       | END   |          |              |

### 6.3.3 方式1及应用实例

- 在方式1下,以定时器0为例,定时器/计数器是一个由TH0中的8位和TL0中的8位组成的16位加1计数器。
- · 方式1与方式0基本相似,最大的区别是方式1的加1计数器 位数是16位。

#### 定时器/计数器0方式1逻辑结构



### 6.3.3 方式1及应用实例

【例5】 利用定时器1测量高电平脉冲的宽度,采用定时器1方式1设计程序,晶振频率6MHz。

解: 根据题意,用定时器1方式1时,被测高电平脉冲从外部中断INT1(P3.3)引脚输入,门控位GATE取1,即由软件和硬件共同启动定时器;被测脉冲为高电平时,启动定时器1,开始计数;被测脉冲变为低电平时,停止定时器1,停止计数,计数值分别存放到片内RAM区40H、41H、42H单元中;计数值与机器周期的乘积就是所测脉冲的宽度。

用定时器1方式1时,定时器/计数器方式寄存器TMOD 高4位中的M1M0应取01,GATE取1;因为用定时功能,C/T取0;定时器方式寄存器TMOD低4位取0,所以TMOD应为90H。

定时初值为00H。

定时器以查询方式工作。

#### 参考程序:

|       |    |    |    |       | ORG  | 0000Н      |              |
|-------|----|----|----|-------|------|------------|--------------|
| 0000н | 02 | 00 | 50 |       | LJMP | MAIN       |              |
|       |    |    |    |       | ORG  | 0050н      |              |
| 0050н | 75 | 40 | 00 | MAIN: | MOV  | 40H,#00H   | ;数据存储单元清0    |
| 0053Н | 75 | 41 | 00 |       | MOV  | 41H,#00H   |              |
| 0056Н | 75 | 42 | 00 |       | MOV  | 42H,#00H   |              |
| 0059н | 75 | 89 | 90 |       | MOV  | TMOD, #90H | ;置定时器1为工作方式1 |
| 005CH | 75 | 8D | 00 |       | MOV  | тн1,#00н   | ;定时初值清0      |
| 005FH | 75 | 8B | 00 |       | MOV  | TL1,#00H   |              |
| 0062Н | 20 | в3 | FD |       | JB 1 | P3.3,\$    | ;查询低电平       |
| 0065Н | D2 | 8E |    |       | SETB | TR1        | ;准备启动定时器1    |
| 0067Н | 30 | в3 | FD |       | JNB  | P3.3,\$    | ;高电平到,启动定时器1 |

#### 参考程序:

| 006AH | 10 | 8 <b>F</b> | 05 | LP1: | JBC   | TF1,LP2   |              |
|-------|----|------------|----|------|-------|-----------|--------------|
| 006DH | 20 | в3         | FA |      | JB I  | P3.3, LP1 | ;低电平到,停止定时器1 |
| 0070Н | 80 | 04         |    |      | SJMP  | LP3       |              |
| 0072Н | 05 | 40         |    | LP2: | INC   | 40H       | ;存储区最高位加1    |
| 0074H | 80 | F4         |    |      | SJMP  | LP1       |              |
| 0076Н | C2 | 8E         |    | LP3: | CLR   | TR1       | ;停止定时器1      |
| 0078Н | 85 | 8D         | 41 |      | MOV   | 41H,TH1   | ;计数值高8位放入存储区 |
| 007BH | 85 | 8B         | 42 |      | MOV   | 42H,TL1   | ;计数值低8位放入存储区 |
| 007EH | 12 | 01         | 00 |      | LCALI | L DIS     | ;调用显示子程序     |
| 0081н | 80 | DD         |    |      | SJMP  | MAIN      | ;重复循环        |
|       |    |            |    |      | ORG   | 0100н     |              |
|       |    |            |    | DIS: | (略)   |           | ;显示子程序       |

**END** 

### 6.3.3 方式1及应用实例

- 【例6】 P1.0口做输出口,接一只喇叭,利用定时器中断方式编写程序,使喇叭放出悦耳的音乐。晶振频率6MHz。
- 解: 音乐是由高低长短相同或不同的音符,按一定的规律组织起来的。每个音符都包括两个要素: 第一是音调,即音符的频率,频率越高音调越高,频率越低音调越低;第二是节拍,即音符的时间长短。

利用定时器/计数器可以产生不同频率的音频脉冲,也可以控制音频脉冲的延时时间。不同的音符对应的频率不同,用定时器 T1方式1可以产生与各音符对应频率的方波,C调各音符频率与定时器定时初值对应关系如下表所示;不同的节拍对应的延时时间不同,通过循环调用一个基本延时子程序可以产生不同的节拍,各曲调与节拍的时间对应关系如下表所示。

#### C调各音符频率与定时器定时初值对照表

| ď | T. |   |
|---|----|---|
|   | ŧ. | L |
| _ |    | 7 |
|   |    |   |

| <b>n</b> 目 左 | 频率₽  | 定时器    | 定时初值ℯ  | n= /z      | 频率∉   | 定时器    | 定时初值↵  |
|--------------|------|--------|--------|------------|-------|--------|--------|
| 唱名。<br>(Hz)。 | 十进制₽ | 十六进制。  | 唱名』    | (Hz)₽      | 十进制₽  | 十六进制。  |        |
| <b>1</b> 🕫   | 262₽ | 64582₽ | FC48H₽ | 5₽         | 748₽  | 65202₽ | FEB2H₽ |
| 2 ₽          | 294₽ | 64686₽ | FCAEH₽ | 6₽         | 880₽  | 65252₽ | FEE4H₽ |
| 3 ₽          | 330₽ | 64778₽ | FD0AH₽ | 7₽         | 988₽  | 65283₽ | FF03H₽ |
| 4 ₽          | 349₽ | 64820₽ | FD34H₽ | ĺ₽         | 1046₽ | 65297₽ | FF11H₽ |
| 5 ₽          | 392₽ | 64898₽ | FD82H₽ | 2 ₽        | 1175₽ | 65323₽ | FF2BH₽ |
| 6 ↔          | 440₽ | 64968₽ | FDC8H₽ | <b>3</b> 0 | 1318₽ | 65346₽ | FF42H₽ |
| 7 ₽          | 494₽ | 65030₽ | FE06H₽ | 4 ÷        | 1397₽ | 65357₽ | FF4DH₽ |
| 1₽           | 523₽ | 65058₽ | FE22H₽ | <b>5</b> ₽ | 1568₽ | 65377₽ | FF61H₽ |
| 2₽           | 587₽ | 65110₽ | FE56H₽ | 6 ₽        | 1760₽ | 65394₽ | FF72H₽ |
| <b>3</b> ₽   | 659₽ | 65157₽ | FE85H₽ | <b>7</b> ₽ | 1967₽ | 65409₽ | FF81H₽ |
| 4₽           | 698₽ | 65178₽ | FE9AH₽ | ب          | 4     | ته     | ٩      |

曲调与节拍的时间对照表

|   | 曲调         | 4/4 | 3/4 | 2/4 |
|---|------------|-----|-----|-----|
| , | 1/4拍时间(ms) | 125 | 187 | 250 |
|   | 1/8拍时间(ms) | 62  | 94  | 125 |

#### (1) 根据歌谱编制唱名与唱名码的对照表。

把歌谱中所有的不同音符的频率相对应的定时器定时初值进行编码,称 为唱名码,唱名与唱名码对照表如下表所示。

生日快乐歌歌谱如下: 1=C 3/4

| <u>5 • 5</u> 65 | 17 - | <u>5 • 5</u> 65 | 21 - | <u>5 • 5</u> 53 | 176 | <u>4 • 4</u> 31 | 21 - | <sub>+</sub>

#### 唱名与唱名码对照表

| 唱名。 | 唱名码。       | 定时∉<br>初值 <i>₽</i> | 唱名。 | 唱名 码。 | 定时∉<br>初值∉ | 唱名。 | 唱名码。                       | 定时₽    | 唱→   | 唱名码。             | 定时↓<br>初值↓ | 4  |
|-----|------------|--------------------|-----|-------|------------|-----|----------------------------|--------|------|------------------|------------|----|
| 5 € | 1 <i>₽</i> | FD82H₽             | 2€  | 5₽    | FE56H₽     | 6₽  | 9₽                         | FEE4H₽ | 3.0  | D₽               | FF42H₽     | +  |
| 6 ₽ | 2₽         | FDC8H              | 3₽  | 6₽    | FE85H₽     | 7₽  | $\mathbf{A}_{\mathcal{C}}$ | FF03H₽ | 4 +  | E <sub>6</sub> 3 | FF4DH      | 4  |
| 7 ₽ | 3₽         | FE06H₽             | 4₽  | 7₽    | FE9AH.     | i₽  | B₽                         | FF11H₽ | 5 ₽  | F⇔               | FF61H₽     | 42 |
| 1₽  | 4₽         | FE22H₽             | 5₽  | 8₽    | FEB2H₽     | 2 ↔ | C₽                         | FF2BH₽ | 不发音↩ | 0₽               | ė.         | 4  |

#### (2) 编制节拍与节拍码对照表。

根据曲调和歌谱要求,确定最小节拍数为1/4拍,基本延时子程序延时时间为187 ms;对不同节拍对应的循环次数进行编码,称为节拍码,节拍与节拍码对照表如下表所示。

|     |      |      | 节拍与  | 节拍码 | 对照表    |        |    |        |    |
|-----|------|------|------|-----|--------|--------|----|--------|----|
| 节拍数 | 1/4拍 | 1/2拍 | 3/4拍 | 1拍  | 1 1/4拍 | 1 1/2拍 | 2拍 | 2 1/2拍 | 3拍 |
|     |      |      |      |     |        |        |    |        |    |
| 节拍码 | 1    | 2    | 3    | 4   | 5      | 6      | 8  | 9      | C  |
|     |      |      |      |     |        |        |    |        |    |

#### (3) 编制简谱码表。

歌谱中每个音符中与频率和延时有关的参数可用一个字节来表述,称为简谱码,字节的高4位存放与音符的频率相对应的唱名码,字节的低4位存放与音符的节拍相对应的节拍码。根据歌谱,编制每个音符的简谱码,并编成简谱码表。

歌谱中每个音符的简谱码可做成表格存放到程序存储器中,唱名码、节 拍码也可做成表格存放到程序存储器中。编写程序通过查表从表格中得到 简谱码,从简谱码中分解出唱名码和节拍码,再通过查表从表格中得到唱 名码和节拍码所包含的定时初值和循环次数。

#### 参考程序: 主程序

|        |            |           |    |        | ORG   | 0000Н        |                  |
|--------|------------|-----------|----|--------|-------|--------------|------------------|
| 0000н  | 02         | 00        | 30 |        | LJMP  | MAIN         |                  |
| 000011 | <b>-</b>   |           |    |        | ORG   | 001BH        |                  |
| 001BH  | 02         | 01        | 50 |        | LJMP  | INT1         |                  |
|        | -          | -         |    |        | ORG   | 0030н        |                  |
| 0030н  | 75         | 81        | 30 | MAIN:  | MOV   | SP,#30H      |                  |
| 0033н  | 75         | 89        | 10 |        | MOV   | TMOD, #10H   | ;设T1工作方式1        |
| 0036н  | 75         | <b>A8</b> | 88 |        | MOV   | IE, #88H     | ;允许中断            |
| 0039н  | 75         | 40        | 00 | LOOP1: | MOV   | 40H, #00H    | ;简谱码指针清0         |
| 003СН  | E5         | 40        |    | LOOP2: | MOV   | А, 40Н       | ;简谱码指针放入A        |
| 003EH  | 90         | 02        | 00 |        | MOV I | PTR, #TABLE1 |                  |
| 0041H  | 93         |           |    |        | MOVC  | A,@A+DPTR    | ;到表格TABLE1中取简谱码  |
| 0042H  | F9         |           |    |        | MOV   | R1, A        | ;取到的简谱码暂存于R1     |
| 0043н  | 60         | 2B        |    |        | JZ I  | FINISH       | ;简谱码是00н(结束码),转移 |
| 0045H  | 54         | 0F        |    |        | ANL   | A, #0FH      | ;不是00н,取低4位(节拍码) |
| 0047H  | FA         |           |    |        | MOV   | R2, A        | ;将节拍码存入R2中       |
| 0048Н  | <b>E</b> 9 |           |    |        | MOV   | A, R1        | ;将取到的简谱码再放入A     |
| 0049Н  | C4         |           |    |        | SWAP  | A            | ;高低4位交换          |
| 004AH  | 54         | 0F        |    |        | ANL   | A, #OFH      | ;取低4位(唱名码)       |
| 004CH  | 70         | 04        |    |        | JNZ   | SING         | ;唱名码不是00н,转移     |
| 004EH  | C2         | 8E        |    |        | CLR   | TR1          | ;唱名码是00H,则不发音    |
| 0050н  | 80         | 17        |    |        | SJMP  | WY           | ;转移至WY           |
|        |            |           |    |        |       |              |                  |

### 参考程序: 主程序

| 0052н | 14 |    | SING:   | DEC  | A             | ;唱名码减1            |
|-------|----|----|---------|------|---------------|-------------------|
| 0053н | F5 | 50 |         | MOV  | 50H,A         | ;唱名码存入50н         |
| 0055Н | 23 |    |         | RL   | A             | ;乘2               |
| 0056н | 90 | 02 | 50      | MOV  | DPTR, #TABLE2 |                   |
| 0059н | 93 |    |         | MOVO | C A,@A+DPTR   | ;到表格TABLE2取计数值高8位 |
| 005AH | F5 | 8D |         | MOV  | TH1, A        | ;计数值高8位存入TH1      |
| 005СН | F5 | 51 |         | MOV  | 51H, A        | ;计数值高8位存入51出      |
| 005EH | E5 | 50 |         | MOV  | А, 50Н        | ;将取到的唱名码再放入A      |
| 0060н | 23 |    |         | RL   | A             | ;乘2               |
| 0061н | 04 |    |         | INC  | A             | ;唱名码加1            |
| 0062н | 93 |    |         | MOV  | C A,@A+DPTR   | ;到表格TABLE2取计数值低8位 |
| 0063н | F5 | 8B |         | MOV  | TL1, A        | ;计数值低8位存入TL1      |
| 0065н | F5 | 52 |         | MOV  | 52H, A        | ;计数值低8位存入52н      |
| 0067н | D2 | 8E |         | SETE | B TR1         | ;启动T1             |
| 0069н | 12 | 01 | 00 WY   | : LC | ALL DELAY     | ;调用基本单位时间(1/4拍)   |
| 006СН | 05 | 40 |         | INC  | 40H           | ;简谱码指针加1          |
| 006ЕН | 80 | CC |         | SJMI | P LOOP2       | ;取下一个简谱码          |
| 0070н | C2 | 8E | FINISH: | CLR  | TR1           | ;停止 <b>T1</b>     |
| 0072н | 80 | C5 |         | SJMI | P LOOP1       | ;重复播放             |
| i     |    |    |         |      |               |                   |

### 参考程序: 延时子程序

|       |          | ORG 0100H          | ;基本单位时间子程序(1/4拍) |
|-------|----------|--------------------|------------------|
| 0100н | 7C C8    | DELAY: MOV R4,#200 | ;延时187ms的循环次数    |
| 0102н | 7D E9    | LP1: MOV R5,#232   | ;延时0.935ms的循环次数  |
| 0104H | DD FE    | DJNZ R5,\$         |                  |
| 0106н | DC FA    | DJNZ R4,LP1        |                  |
| 0108н | DA F6    | DJNZ R2,DELA       | y;节拍数未到,转移       |
| 010AH | 22       | RET                |                  |
|       |          | ORG 0150H          |                  |
| 0150н | C0 E0    | INT1: PUSH ACC     | ;将A的值暂存于堆栈       |
| 0152н | C0 D0    | PUSH PSW           | ;将PSW的值暂存于堆栈     |
| 0154н | 85 52 8B | MOV TL1, 52H       | ;重置定时器初值         |
| 0157н | 85 51 8D | MOV TH1, 51H       |                  |
| 015AH | B2 90    | CPL P1.0           | ;将P1.0取反         |
| 015CH | D0 D0    | POP PSW            | ;至堆栈取回PSW值       |
| 015EH | D0 E0    | POP ACC            | ;至堆栈取回A值         |
| 0160н | 32       | RETI               | ;返回主程序           |
|       |          |                    |                  |

### 参考程序: 简谱码表

ORG 0200H

| 0200Н | TABLE1:DB | 82H,01H,81H,94H,84H     | ;简谱码表 |
|-------|-----------|-------------------------|-------|
| 0205н | DB        | 0B4H,0A4H,04H           |       |
| 0208н | DB        | 82H,01H,81H,94H,84H     |       |
| 020DH | DB        | OC4H,OB4H,O4H           |       |
| 0210н | DB        | 82H,01H,81H,0F4H,0D4H   |       |
| 0215н | DB        | OB4H, OA4H, 94H         |       |
| 0218Н | DB        | 0E2H,01H,0E1H,0D4H,0B4H |       |
| 021DH | DB        | OC4H,OB4H,O4H           |       |
| 0220Н | DB        | 82H,01H,81H,94H,84H     |       |
| 0225Н | DB        | 0B4H,0A4H,04H           |       |
| 0228Н | DB        | 82H,01H,81H,94H,84H     |       |
| 022DH | DB        | OC4H,OB4H,O4H           |       |
| 0230н | DB        | 82H,01H,81H,0F4H,0D4H   |       |
| 0235н | DB        | OB4H, OA4H, 94H         |       |
| 0238н | DB        | 0E2H,01H,0E1H,0D4H,0B4H |       |
| 023DH | DB        | OC4H,OB4H,O4H           |       |
| 0240Н | DB        | ООН                     |       |

#### 参考程序:唱名码表

0250H

0256H

025CH

0262H

0268H

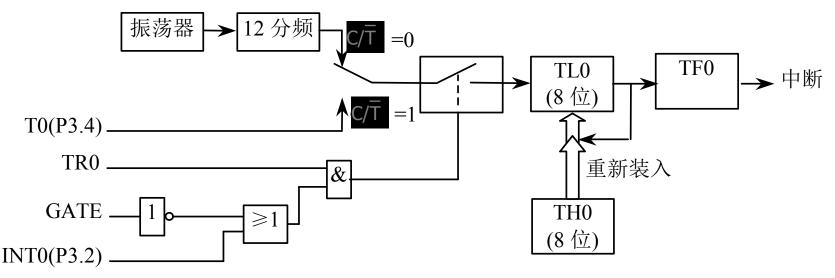
ORG 0250H

TABLE2:DW FD82H,FDC8H,FE06H ;唱名码表

DW FE22H, FE56H, FE85H

DW FE9AH, FEB2H, FEE4H

DW FF03H, FF11H, FF2BH


DW FF42H, FF4DH, FF61H

END ;程序结束

## 6.3.4 方式2及应用实例

- 在方式1下,以定时器0为例,定时器/计数器是一个能自动 装入初值的8位加1计数器,TH0中的8位用于存放定时初值 或计数初值,TL0中的8位用于加1计数器。
- 方式2与方式0基本相似,最大的区别除方式2的加1计数器 位数是8位外,加1计数器溢出后,硬件使TF0自动置1,同 时自动将TH0中存放的定时初值或计数初值再装入TL0,继 续计数。

#### 定时器/计数器0方式2逻辑结构



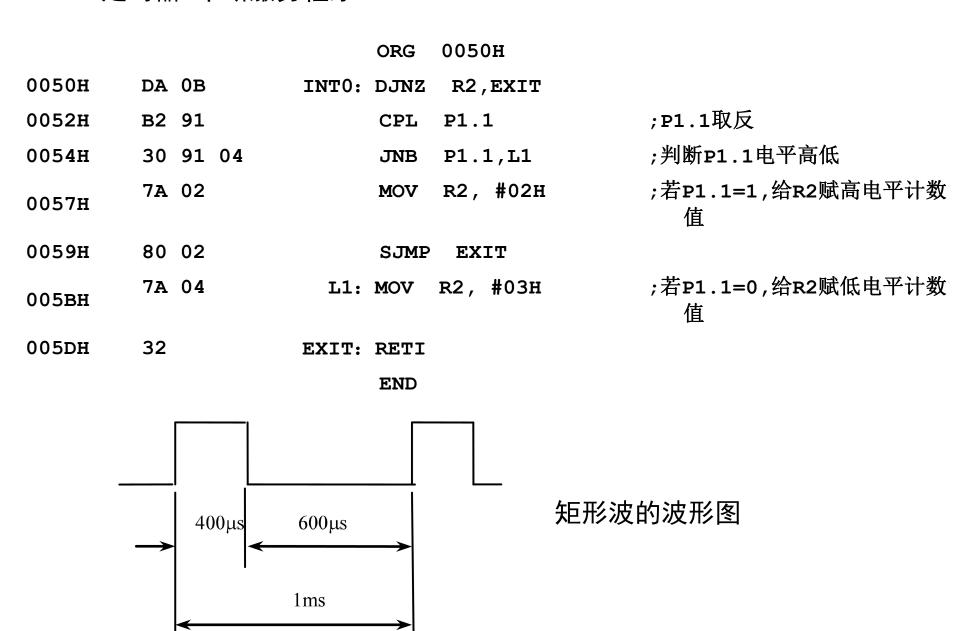
## 6.3.4 方式2及应用实例

- 【例7】 P1.1输出脉冲宽度调制(PWM)信号,即脉冲频率为1kHz、占空比为2:5的矩形波,以控制直流电动机按一定的速度转动,晶振频率为6MHz。
- 解: 直流电动机具有优良的调速特性,调速方法也从模拟化逐步向数字化转化,采用脉冲宽度调制(PWM)的方法可以实现平滑调速,电机转速由脉冲的占空比决定。
  - 频率为1kHz,周期为1ms,占空比为2:5的P1.1输出矩形波的波形如下图所示。
  - 对P1.1取反时,由于高、低电平的时间不同,可找出一个时间 基准,如100μs、200μs。

本例设定时间基准200μs,即定时时间为200μs。

定时初值 X=28-T/T机=28-200/2=256-100=156=9CH

高电平的软件计数为2,低电平的软件计数为3。


定时器以查询方式工作。

主程序:

# 6.3.4 方式2及应用实例

|       |            |            |    |       | ORG  | 0000н      |              |
|-------|------------|------------|----|-------|------|------------|--------------|
| 0000н | 02         | 00         | 30 |       | LJMP | MAIN       |              |
|       |            |            |    |       | ORG  | 000ВН      | ;定时器0的中断入口地址 |
| 000ВН | 02         | 00         | 50 |       | LJMP | INTO       |              |
|       |            |            |    |       | ORG  | 0030н      |              |
| 0030н | D2         | 91         |    | MAIN: | SETB | P1.1       | ;设置P1.1初始状态  |
| 0032Н | 7 <b>A</b> | 02         |    |       | MOV  | R2, #02H   | ;给R2赋高电平计数值  |
| 0034н | 75         | 89         | 02 |       | MOV  | TMOD, #02H | ;定时器0工作方式2   |
| 0037н | 75         | 8C         | 9C |       | MOV  | тн0, #9СН  | ;置200μs定时初值  |
| 003AH | 75         | 8 <b>A</b> | 9C |       | MOV  | TL0, #9CH  |              |
| 003DH | D2         | AF         |    |       | SETB | EA         |              |
| 003FH | D2         | <b>A</b> 9 |    |       | SETB | ET0        |              |
| 0041H | D2         | 8C         |    |       | SETB | TRO        |              |
| 0043Н | 80         | FE         |    |       | SJMP | \$         | ;动态暂停        |

#### 定时器0中断服务程序:



## 6.3.4 方式2及应用实例

【例8】 定时器0外部输入端(P3.4) 作为计数脉冲输入端,利用手控单脉冲信号作为计数输入脉冲,编写控制程序,每输入十个脉冲,工作寄存器R0的内容加一,晶振频率为6MHz。

解:用定时器0方式2时,定时器/计数器方式寄存器TMOD低4位中的M1M0应取10;

可设定为软件启动定时器,故GATE取0;

因用计数功能, C/T取1;

定时器方式寄存器TMOD高4位为无关位,一般都取0,所以TMOD应为06H。

计数初值 X=28-计数值=28-10=256-10=246=F6H 定时器以中断方式工作。

### 参考程序:

|       |    |            |    |       | ORG  | 0000н             |              |
|-------|----|------------|----|-------|------|-------------------|--------------|
| 0000н | 02 | 00         | 50 |       | LJMP | MAIN              |              |
|       |    |            |    |       | ORG  | 000вн             | ;定时器0的中断入口地址 |
| 000вн | 02 | 02         | 00 |       | LJMP | SER0              | ;转向中断服务程序    |
|       |    |            |    |       | ORG  | 0050н             |              |
| 0050н | 78 | 00         |    | MAIN: | MOV  | R0,#00H           |              |
| 0052н | 75 | 89         | 06 |       | MOV  | <b>TMOD</b> ,#06H | ;置计数器0为工作方式2 |
| 0055н | 75 | 8C         | F6 |       | MOV  | TH0,#0F6H         | ;置10次计数初值    |
| 0058н | 75 | 8 <b>A</b> | F6 |       | MOV  | TL0,#0F6H         |              |
| 005вн | D2 | AF         |    |       | SETB | EA                |              |
| 005DH | D2 | <b>A</b> 9 |    |       | SETB | ETO               |              |
| 005FH | D2 | 8C         |    |       | SETB | TR0               |              |
| 0061н | 80 | FE         |    |       | SJMP | \$                |              |
|       |    |            |    |       | ORG  | 0200Н             |              |
| 0200Н | 80 |            |    | SER0: | INC  | R0                | ;中断服务程序      |
| 0201H | 32 |            |    |       | RETI |                   |              |
|       |    |            |    |       | END  |                   |              |
|       |    |            |    |       |      |                   |              |

## 6.3.4 方式2及应用实例

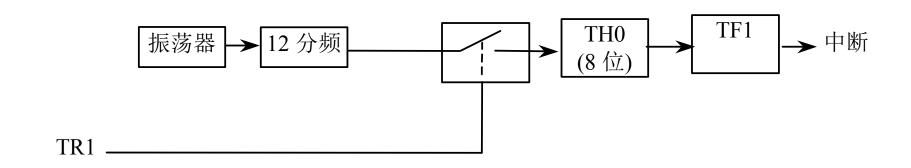
【例9】 利用定时器/计数器扩展一个外部中断源,用手控单脉 冲信号作为外部中断信号,P1口控制八只灯(P1口输出低电 平时灯被点亮),同一时间只有一盏灯点亮,编写控制程序, 每发一个单脉冲信号,循环点亮下一盏灯。

解:定时器/计数器0以计数功能工作,当计数初值为FFH时, 只要外部计数输入引脚T0(P3.4)输入一个计数脉冲,8位加 1计数器TL0变为00H, TF0由硬件自动置1, 并申请中断。 利用这一特点,将外部中断请求信号作为计数脉冲送入外 部计数输入引脚T0(P3.4),就可实现中断功能。

定时器/计数器0以方式2工作。

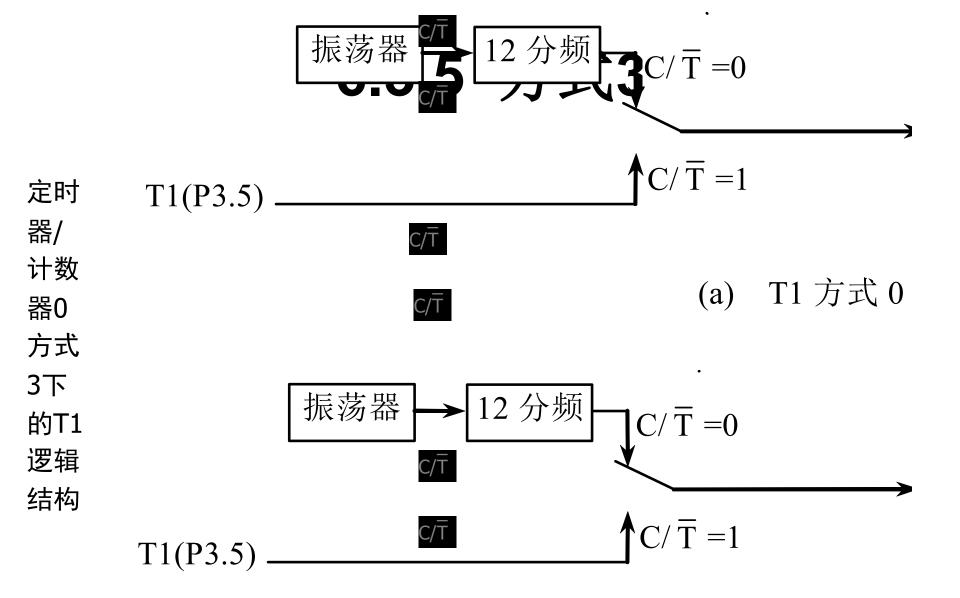
### 参考程序:

|       |            |            |    |      | ORG    | 0000н     |              |
|-------|------------|------------|----|------|--------|-----------|--------------|
| 0000н | 01         | 50         |    |      | AJMP   | MAIN      |              |
|       |            |            |    |      | ORG    | 000BH     | ;定时器0的中断入口地址 |
| 000вн | 21         | 00         |    |      | АЈМР   | INT       | ;转向中断服务程序    |
|       |            |            |    |      | ORG    | 0050н     |              |
| 0050н | 75         | 89         | 06 | MAIN | I: MOV | TMOD,#06H | ;置计数器0为工作方式2 |
| 0053н | 75         | 8C         | FF |      | MOV    | TH0,#0FFH |              |
| 0056Н | 75         | 8 <b>A</b> | FF |      | MOV    | TLO,#0FFH |              |
| 0058н | D2         | AF         |    |      | SETB   | EA        |              |
| 005AH | D2         | <b>A</b> 9 |    |      | SETB   | ETO       |              |
| 005СН | D2         | 8C         |    |      | SETB   | TRO       |              |
| 005EH | 74         | FE         |    |      | MOV    | A,#OFEH   |              |
| 0060н | <b>F</b> 5 | 90         |    |      | MOV    | P1,A      |              |
| 0062н | 80         | FE         |    |      | SJMP   | \$        |              |
|       |            |            |    |      | ORG    | 0100H     |              |
| 0100н | 23         |            |    | INT: | RL A   | <u>.</u>  | ;中断服务程序      |
| 0101н | F5         | 90         |    |      | MOV    | P1,A      |              |
| 0103н | 32         |            |    |      | RETI   |           |              |
|       |            |            |    |      | END    |           |              |
| 1     |            |            |    |      |        |           |              |


### 6.3.5 方式3

- 1. T0方式3的结构特点
- 在方式3下,定时器0分为两个独立的8位加1计数器TH0和TL0。其中TL0既可用于定时,也能用于计数; TH0只能用于定时。定时器/计数器0方式3逻辑结构如下图所示。
- 在方式3下,加1计数器TL0占用了T0除TH0外的全部资源,原T0的控制位和信号引脚的控制功能与方式0、方式1相同;与方式2相比,只是不能自动将定时初值或计数初值再装入TL0,而必须用程序来完成。加1计数器TH0只能用于简单的内部定时功能,它占用了原T1的控制位TR1和TF1,同时占用了T1中断源。

### 6.3.5 方式3


#### 定时器/计数器0方式3逻辑结构





### 6.3.5 方式3

- 2. T0方式3下T1的结构特点
- T1不能工作在方式3下,因为在T0工作在方式3下时,T1的控制位TR1、TF1和中断源被T0占用。T1可工作在方式0、方式1、方式2下,但其输出直接送入串行口。设置好T1的工作方式,T1就自动开始计数;若要停止计数,可将T1设为方式3。
- T1通常用作串行口波特率发生器,以方式2工作会使程序简单一些。



(b) T1 方式 1

## 本章小结

- 8051单片机共有两个可编程的定时器/计数器,分别称为 定时器0和定时器1,它们都是16位加1计数器。定时器/计 数器的工作方式、定时时间、计数值和启停控制由程序来 确定。
- 定时器/计数器有四种工作方式,工作方式由定时器方式寄存器TMOD中的M1、M0位确定。方式0是13位计数器,方式1是16位计数器,方式2是自动重装初值8位计数器;方式3时,定时器0被分为两个独立的8位计数器,定时器1是无中断的计数器,此时定时器1一般用作串行口波特率发生器。
- 定时器/计数器有定时和计数两种功能,由定时器方式寄存器TMOD中的C/T位确定。当定时器/计数器工作在定时功能时,通过对单片机内部的时钟脉冲计数来实现可编程定时;当定时器/计数器工作在计数功能时,通过对单片机外部的脉冲计数来实现可编程计数。

### 本章小结

- 当定时器/计数器的加1计数器计满溢出时,溢出标志位 TF1(TF0)由硬件自动置1,对该标志位有两种处理方法。 一种是以中断方式工作,即TF1(TF0)置1并申请中断,响 应中断后,执行中断服务程序,并由硬件自动使TF1(TF0) 清0;另一种以查询方式工作,即通过查询该位是否为1来 判断是否溢出,TF1(TF0)置1后必须用软件使TF1清0。
- 定时器/计数器的初始化实际上就是对定时器/计数器进行编程,以实现设计者所要求的控制功能。这通过对TMOD、TH0(TH1)、TL0(TL1)、IE、TCON专用寄存器中相关位的设置来实现,其中IE、TCON专用寄存器可进行位寻址。



## 习 题

- 1. 8051单片机的定时器/计数器的定时和计数两种功能各有什么特点?
- 2. 当定时器/计数器的加1计数器计满溢出时, 溢出标志位TF1 由硬件自动置1, 简述对该标志位的两种处理方法。
- 3. 当定时器/计数器工作于方式0时,晶振频率为12MHz,请 计算最小定时时间、最大定时时间、最小计数值和最大计 数值。
- 4. 8051单片机的定时器/计数器四种工作方式各有什么特点?
- 5. 硬件定时与软件定时的最大区别是什么?
- 6. 根据定时器/计数器0方式1逻辑结构图,分析门控位GATE 取不同值时,启动定时器的工作过程。

## 习题

- 7. 用方式0设计两个不同频率的方波, P1.0输出频率为200Hz, P1.1输出频率为 100Hz, 晶振频率12MHz。
- 8. P1.0输出脉冲宽度调制(PWM)信号,即脉冲频率为2kHz、 占空比为7: 10的矩形波,晶振频率12MHz。
- 9. 两只开关分别接入P3.0、P3.1,在开关信号4种不同的组合逻辑状态,使P1.0分别输出频率0.5kHz、1kHz、2kHz、4kHz的方波,晶振频率为12MHz。
- 10. 有一组高电平脉冲的宽度在50~100ms之间,利用定时器 0测量脉冲的宽度,结果存放到片内RAM区以50H单元为 首地址的单元中,晶振频率12MHz。



Q & A?

Thanks!

