介入放射学

川北医学院医学影像学院

第一章 总 论

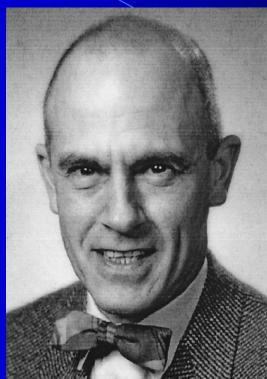
• 介入放射学(Interventional Radiology, IR)是以影像诊断为基础,在医学影像诊断设备的引导下,利用穿刺针、导管导入到病人病变部位,对疾病进行诊断和治疗的临床应用学科

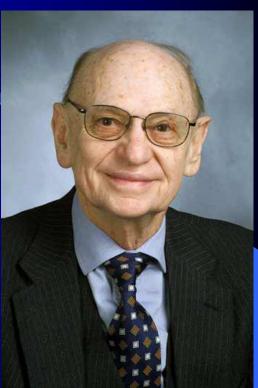
第一节 介入放射学的发展简史

一、世界介入放射学的发展简史

1928年	Santos	完成第一例经皮穿刺主动脉造影
1940年	Farinas	切开股动脉将导管送入主动脉
1953年	Seldinger	首创用套管针、导丝和导管经皮股动脉置管作血管造影的方法
1956年	Oedman	提出选择性插管术


1964年	Dotter	采用同轴导管扩张下肢 动脉粥样硬化
1973年	Gruntzig	球囊导管
1977年	Eurich	冠状动脉球囊扩张术
1969年	Dotter	首例犬腘动脉支架放置
1985年	Gianturco	自扩式支架
	Plmaz	球扩式支架


同期开展:


- 二尖瓣、肺动脉瓣扩张术
- 肝、肾肿瘤、脾栓塞
- 经皮胆道脓肿引流
- 经皮穿刺活检

设备的进步

- 1932年Moniz与Caldas使用人工快速换片机
- 1943年J Sanchez-Perea使用自动换片机
- 80年代出现影像增强器、自动注射器、电视增强透视、电影摄影和电视摄影和电视录像等,随后出现高压注射器和DSA

二、我国介入放射学的发展简史

- 国外于70年代中期较广泛开展介入放射,国内 于80年代初期开展
- 80年代国内举办了介入放射学学习班,培养了国内第一批介入放射学医生
- 1984年开展支气管动脉灌注化疗治疗肺癌

- 1985年开展食道球囊扩张
- 1986年开展肾动脉扩张
- 1986年召开第一届全国介入放射学术会议
- 2007年第五届西部介入放射学术会议

- 1990年卫生部文件决定将开展介入放射学的放射科改为临床科室
- 90年代介入放射学作的开展作为三甲<mark>医院的评</mark> 审要求
- 1997年国家科委、卫生部和医药管理局三部委 召开中国介入医学发展战略研讨会,将介入放 射学项目列为"九五"攻关项目

目前,在肿瘤(肝癌等)、布加氏综合征、椎间盘突出、肝硬化(TIPSS)和血管疾病介入治疗的临床和基础研究等方面取得可喜成绩

第二节 介入放射学所需器材

- 一、影像监视设备
- (一) 直接X线透视

X线穿透人体后在荧光屏上成像的方法, 是传统的、基本的监视手段。优点:方便、 实时显像、应用广泛。缺点:图像质量差, 分辨率差,有X线损伤。

(二)间接X线透视与DSA

通过人体的X线通过光电转换器并经摄像系统传递到显示器上的方法,由于应用了影像增强器,图像清晰明亮,便于观察,已基本取代直接X线透视,并且X线曝光量明显减少。

DSA是在间接X线透视基础上发展起来 的,利用其计算机技术消除了骨骼、软组织 对于注入血管系统造影剂影像的影响,提高 了血管显示的清晰度,并减少了造影剂的用 量、使器官、组织及病变的血流动力学显示 更加清楚,是目前血管系统介入放射学首选 的监视方法。

(三) 超声

优点:使用方便,未发现对人体有明显的伤害是其最大的优点。在临床上广泛应用于胸腹部非血管性介入。

缺点: 受声学成像的特点所制约, 易受固体、气体等因素的影响,增加了操作的技巧性。

(四) CT

密度分辨率高、能清楚的显示病变与 周围组织的关系。

广泛应用于非血管性介入。颅内出血穿刺减压治疗,肺内病变穿刺活检等。

(五) MRI

作为特殊的介入放射学监视方法,没有射 线损伤,观察范围大。

开放型MR机和MR透视更加方便介入操作。

由于设备、性能和专用无磁性介入放射学器材开发程度所限,尚未在临床得到广泛使用。 具有广阔的应用前景。

二、使用器材

(一) 穿刺针

最基本器材。 用途: 建立通道。

构成:锐利的针芯和外套管。外径用G、

内径用英寸表示表示。

(二) 导管

主要器材。分为造影导管、引流导管、球囊扩张导管等。用于造影、引流、扩张狭窄管腔、暂时闭塞血管管腔。

导管直径用F表示(Franch, 1 Franch=0.335mm)。球囊长度和直径用cm表示、而导管内径用英寸表示。

(二) 导丝

通过穿刺针的外套管,用导丝交换法送入导管,或经导管利用导丝导向性、进行选择性插管的重要器材。

根据物理特性分为超滑导丝、超硬导丝、超长的交换导丝,溶栓导丝等。

导丝直径用英寸表示。

(四) 导管鞘

为了避免导管反复出入组织或管壁对局部造成损伤, 尤其是避免损伤血管而使用的一种器材。 由带 返流伐的外鞘和能够通过导丝的中空内芯组成。

用硅胶制成的返流阀在防止血液外溢同时,可以反复通过相应口径的导管,而且血管壁不会受损伤。内芯较硬,前端成锥状,以保证导管鞘可以顺利沿导丝送入。

导管鞘直径和内径用F(Franch)表示。内芯的内径 用英寸表示。

(五) 支架

用于对狭窄管腔支撑以达到恢复管腔流通功能之用。

金属支架根据其扩张特性分为自膨式和球囊扩张式支架。

金属支架可以用于血管系统和非血管系统。

(六) 其他器材

腔静脉滤器

网篮

激光、微波、冷冻器材

第三节 介入放射学使用药物

- 一、血管收缩与扩张药物
- (一) 血管扩张类药物

主要用于血管造影时增加被造影血管的 血流量,使图象更加清晰,或诊断出血的血管 造影出血影像不明确时,还可用于各种原因所 致的血管痉挛。

常用的有罂素碱、前列腺素、妥拉唑啉。

(二) 血管收缩类药物

主要用于减少或降低动脉血流速度或减少正常组织血流量,常用于少量消化道出血的治疗或肿瘤栓塞。

常用的血管收缩类药物:肾上腺素、加压素、血管紧张素。

二、止血与抗凝、栓塞药物

(一) 止血类药物

用于防治各种出血。一般来说,止血药 只对毛细血管出血等面积大、范围广、血管 造影所见出血血管不明确者有效,对较大血 管出血仅起辅助作用,还须通过后述的栓塞 疗法进行治疗。

常用止血药物

维生素K3(Vitamin K3)

维生素K1(Vitamin K1)

氨甲苯酸(止血芳酸)(Aminomethylbenzoic acid)

鱼精蛋白(Protamine)

酚磺乙胺(止血敏)(Etamsylate)

凝血酶 (Thrombin)

(二) 抗凝药物

主要用于防治各种血栓性疾病。另外,还用于球囊扩张或置入内支架后的抗凝治疗。

肝素 (肝素) (Heparin)

华法林(Harfarin sodium)

阿司匹林(Aspirin)

双密达莫(潘生丁)(Dipyridamole, Persantin)

(三)溶栓药物

主要用于全身各部动静脉血栓的溶栓治疗。

常用药物:

链激酶 (Streptokinase)

尿激酶 (Urokinase)

三、抗肿瘤药物

- (一) 抗肿瘤药物分类
- 按药物来源分六类
- > 烷化剂
- > 抗代谢药
- > 抗抗生素
- > 植物药
- > 激素
- > 其它

- 按细胞增殖周期分两类
- 》细胞周期非特异性药物:主要影响DNA的复制或功能,作用于增殖细胞群各期。包括:烷化剂、大部分抗癌抗生素以及糖皮质激素。
- 》细胞周期特异性药物: 仅对增殖细胞群的某一期有作用。作用于S期的抗代谢药; 作用于M 期的长春新碱。某些作用于S期的氟尿嘧啶、 氨甲喋呤等,同时对G1期也有一定作用。

(二) 烷化剂

烷化剂又称烃化剂或细胞毒类药物。细胞 周期非特异性药物,对增殖细胞群和非增殖 细胞群的肿瘤细胞都有杀伤作用,对生长快 的组织如骨髓和粘膜上皮组织作用明显。

环磷酰胺(Cyclophosphamide,Cytoxan, CTX):常用于肺癌灌注治疗。

(三) 抗代谢药

抗代谢类药物能干扰细胞正常代谢过程。制细胞增殖,导致细胞死亡。细胞周期特异性药物,主要杀灭S期细胞,另对增殖细胞个期也有一定作用。

氟尿嘧啶 (5-氟尿嘧啶) (Fluorluracil, 5-Fu),用途广泛。

(四) 抗肿瘤抗生素

抗肿瘤抗生素具有细胞毒性,有对心肌有明显毒性作用。

- 丝裂霉素C(Mitomycin C, MMC):属细胞周期非特异性药物,抗癌谱广,毒性较大,主要用于消化道癌、肺癌、乳腺癌、宫颈癌、绒癌等。
- 阿霉素(14-羟正定霉素,Adriamycin,ADM):属细胞周期非特异性药物,抗癌谱广,尿中排出少(仅5%),肝肾功能不良时可增加毒性。
- 表阿霉素(Pharmorubicin, Epirubicin, EPB): 同阿霉素,对心脏毒性和骨髓抑制减少。

(五) 植物类抗肿瘤药

胃肠道吸收差,静脉用药。对组织刺激强, 小心使用,防外渗。

依托泊苷(Etoposide):为细胞周期依赖性和特异性的抗肿瘤药物,作用于S期和G2期,用于小细胞肺癌、淋巴类肿瘤、睾丸癌。

(六)杂类

作用机理未明。

- ➤ 顺铂(二氯二胺铂,顺氯胺铂): (Cisplatin, CDDP)为细胞周期非特异性药物,有细胞毒性,抗癌谱广,主要用于泌尿生殖系统恶性肿瘤、恶性淋巴瘤、乳腺癌、肝癌等。
- > 卡铂(Carboplatin):对小细胞肺癌、卵巢癌、 睾丸癌、头颈部鳞癌、恶性淋巴瘤等有效。

(七)激素类

激素对机体起调节作用。激素失调能诱发各种肿瘤。改变激素不平衡可抑制肿瘤生长。

雄激素:对乳腺癌有效,尤其是绝经期前的病人 或骨转移者。

雌激素:对前列腺癌和绝经期后的转移性乳腺癌有效。

肾上腺皮质激素:为细胞周期非特异性药物,主要用于急性淋巴细胞性白血病。

(八) 免疫增强剂

通过提高机体抗肿瘤的免疫能力,杀灭 或抑制肿瘤细胞。经导管灌注或全身用药。

第四节 栓塞物质

- 栓塞物质是指使血管闭塞的物质或因素。用于 经导管栓塞术
- 常用的栓塞物质:生物栓塞物质、海绵类、弹簧圈、可脱落球囊、组织坏死剂、粘胶类、微粒、微球、微囊类、碘油、中药类

第五节 介入放射学的分类与范畴

- 一、按介入放射学方法分类
- (一) 穿刺/引流术
- **血管穿刺**
- **> 囊肿、脓肿、血肿的穿刺治疗**
- **实质脏器肿瘤的穿刺治疗**
- > 采取组织学标本
- 阻断、破坏神经传导用于止痛

(二)灌注/栓塞术

(Transcatheter arterial infusion/embolization)

- 各种原因出血的治疗
- > 实质脏器肿瘤的治疗,如肝癌介入治疗
- **减少或消除脏器功能**
- * 非特异性炎症(结肠炎)

(三) 成形术 (Angioplasty)

- > 恢复管腔脏器的形态,如动脉狭窄
- 建立新的通道,如经颈静脉肝内门腔静脉分流术
- > 消除异常通道,如闭塞气管食管瘘

(四)其他

> 医源性的血管内异物取出

- 二、按照治疗领域分类
- (一) 血管系统介入放射学
- (Vescular interventional radiology)
 - ▶ 血管本身的病变
 - 利用灌注/栓塞治疗肿瘤
 - 利用动脉栓塞消除器官功能
 - 利用灌注治疗非特异性炎症
 - > 血管造影

(二) 非血管系统介入放射学

(Non-vescular interventional radiology)

- 利用成形术治疗各种原因造成的管腔狭窄
- 利用穿刺引流术治疗囊肿、脓肿、血肿、积液、梗阻性黄疸、肾盂积水
- 利用穿刺术采取组织、病理学标本
- 利用穿刺术通过穿刺针注入药物或施加物 理、化学因素治疗肿瘤或疼痛

三 介入放射学的范畴

- > 适应症广泛,几乎涵盖全身所有部位和器官
- > 成形术: 心脑血管狭窄、非血管管腔狭窄
- > 肿瘤栓塞和灌注化疗术: 控制肿瘤
- > 综合介入放射治疗: 肝硬化、脑动脉瘤、胆管 细胞癌
- > 其他

第六节 介入放射学地位和未来

一、在放射学界的地位

介入放射学出现以前,放射科作为诊断 科室(辅助科室、医技科室),放射科医生 只是医辅人员和医技人员,无医生处方权和 医生印章。 介入放射学出现以后,从事介入放射学工作的医生拥有医学影像诊断知识、介入放射学知识和门诊、病房的管理知识,直接诊断和治疗病人,从事门诊、病房和介入手术工作,参加医疗、教学和科研工作。

只有不断学习、更新观念、精益求精, 才能保证介入放射学持续发展,有利于提高介 入放射学和医学影像学的地位。

二、在医学界的地位

- > 正逐步替代部分内科治疗和外科手术
- 介入医学将发展成为与内科、外科鼎力的三 大治疗手段之一